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Abstract

This paper examines statistical language modelling of Russian and English in the context of automatic

speech recognition. The characteristics of both a Russian and an English text corpus of similar composition

are discussed with reference to the properties of both languages. In particular, it is shown that to achieve

the same vocabulary coverage as a 65,000 word vocabulary for English, a 430,000 word vocabulary is
required for Russian. The implications of this observation motivate the remainder of the paper. Perplexity

experiments are reported for word-based N -gram modelling of the two languages and the differences are

examined. It is found that, in contrast to English, there is little gain in using 4-grams over trigrams for

modelling Russian. Class-based N -gram modelling is then considered and perplexity experiments are re-

ported for two different types of class models, a two-sided model and a novel, one-sided model for which

classes are generated automatically. Word and class model combinations show the two-sided model results

in lower perplexities than combinations with the one-sided model. However, the very large Russian vo-

cabulary favours the use of the one-sided model since the clustering algorithm, used to obtain word classes
automatically, is significantly faster. Lattice rescoring experiments are then reported on an English-

language broadcast news task which show that both combinations of the word model with either type of

class model produce identical reductions in word error rate.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

This paper considers language modelling for automatic speech recognition of Russian and
English. The problems that are encountered with the modelling of Russian are found to be
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significantly different to those observed when modelling English. For example, it is shown that to
achieve the same vocabulary coverage as a 65,000 word vocabulary for English, a 430,000 word
vocabulary is required for Russian. A comparison is made wherever possible between the sta-
tistical characteristics of the two languages, based both on data from a Russian and an English
text corpus and also in terms of the performance of language modelling techniques that are ap-
plied to both languages. One consequence of the different characteristics of Russian was that
novel modelling techniques were needed. In this paper, we investigate the performance, on both
the Russian and English data, of two different class-based language models that use automatically
derived classes. One, referred to as the two-sided class model, has already received much attention
in the literature. The other, referred to as a one-sided model, is not known to have been inves-
tigated before and its use was motivated by the particular properties of Russian that were en-
countered. The new model trades a small loss in the ability to generalise with a significantly
improved clustering speed over the conventional class model. Further details of this work are
given in Whittaker (2000) together with experiments using sub-word particle language modelling
techniques.
In Section 2, we outline the major differences between Russian and English that are likely to

affect statistical language modelling of Russian. This is followed in Section 3 with the description
of the Russian and English corpora used in the experimental work in this paper and by an
overview and comparison of their salient characteristics. In Section 4, experimental results are
reported for conventional word-based N -gram models on the two corpora and in Section 5 ex-
perimental results are reported for two different types of class-based language model. Section 6
reports word error rate results obtained from lattice rescoring experiments for the word models
and the two different types of class models on an English language broadcast news task.

2. Russian vs. English

There are two important differences between Russian and English that are of relevance to
statistical language modelling and that are shared to varying degrees by many other languages:
word formation and word ordering. Russian words typically exhibit clearer morphological pat-
terns than can be found in English words. For example, a Russian word will often contain the
following, easily identifiable, constituent parts: a root which can be thought of as responsible for
the nuclear meaning of the verb, attached to which may be zero or more derivational prefix(es) and
zero or one suffix, which together form a stem. The stem often acquires an entirely new lexical
meaning with the presence of these affixes. Of most relevance to language modelling, however, is
the inflection (inflectional suffix), which is appended to the stem and which determines the
grammatical case (of which there are six), gender (masculine, feminine, or neuter), number, etc. of
the word. The presence of the inflection results in many more different word forms representing the
same word than is the case for the equivalent English word, for which there are generally no more
than two distinct forms, typically with and without an appended ‘‘s.’’ The direct consequence of
this rich morphology is that the coverage of a Russian vocabulary will tend to be significantly less
than that of the same sized English vocabulary.
English compensates for having less grammatical information encoded within the words

themselves, by imposing strict constraints on the relative order of words in a sentence. In the
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sentence, ‘‘The boy kicks the ball.’’, it is only clear who is doing what to whom from the order in
which the words are written. In Russian, on the other hand, the subject and object of the sentence
can only be determined by each word�s inflection and by agreement with the verb, not from the
order of the words themselves. In fact, the above sentence translated into Russian, could be ex-
pressed with the six (there is no definite article in Russian) different permutations of the Russian
for the three words ‘‘boy’’, ‘‘kicks’’ and ‘‘ball’’ without loss of meaning. Clearly, this phenomenon
has the potential for seriously weakening the predictive power of N -gram language models,
however, in reality some word orderings are preferred stylistically to others. In particular, a
different emphasis is placed on a word depending on its position in the sentence, so the permu-
tations of a sequence of words will actually occur with different frequencies.

3. The corpora and their characteristics

Two language modelling corpora, one for Russian and one for English, were required for the
language modelling experiments presented in this paper. Both corpora needed to be sufficiently
similar in terms of composition and size, so that their characteristics and the experimental results
could be compared sensibly. Two similar corpora were eventually located, each of which con-
tained around 100 million tokens after textual preprocessing.

3.1. The Russian corpus

At the time of writing, there are still no large, commercially available Russian language text
corpora. However, a large source of Russian text material was eventually located in Russia and
this source was used as the basis for all the Russian language modelling experiments contained in
this paper. This corpus of Russian texts is very varied in content, ranging from classical literature
and translations of popular foreign novels to lists of anecdotes and jokes. After the corpus had
been cleaned and the character mappings normalised, sentence boundary information (sentence-
start and sentence-end markers) was added which replaced various punctuation markers such as
full-stops, ellipsis, and exclamation marks. All other punctuation was removed. Finally, an im-
portant procedure in corpus preparation was also executed – the removal of repeated ‘‘chunks’’ of
text from the corpus, including whole articles or excerpts from other texts where necessary. If such
repetitions were to occur both in the training set and the test set then spurious results (most likely
to be optimistic results) would be obtained. An heuristic method of determining identical repe-
titions in the corpus of fifty-word sequences was developed and repeated segments up to and
including the nearest sentence-end marker were removed from the corpus. The final stage of
corpus preprocessing mapped all numerical digits to a hNUMBERi symbol since there is no
simple method for converting numerical digits into word representations in Russian, because each
number changes its grammatical case, gender, and number depending on its role in the sentence.

3.2. The British National Corpus

Since it was desired to conduct similar experiments on English to those on Russian, the choice
of English language corpus, of which there were many, was dictated by the characteristics of the
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Russian corpus, over which there was little control. It was decided that the most similar, readily
available English language corpus in terms of its composition and size, was the British National
Corpus (BNC corpus) (Burnard, 1995). The BNC corpus is a collection of English language texts
ranging from belles lettres and entire novels to transcriptions of spoken language. As with the
Russian corpus, there were large sections of repeated data in the BNC corpus. The same method,
mentioned above, of removing repeated fifty-word sequences was also used to produce a
‘‘cleaner’’ English corpus. After text normalisation had been performed and to maintain consis-
tency with the processing of the Russian corpus, numerical digits were all mapped to a
hNUMBERi symbol. The occurrence of these numerical digits, however, was significantly lower
than in the Russian corpus.

3.3. Corpus partitioning

Once the corpora had been cleaned and normalised, they were both partitioned into one
training and two test sets: one development set (dev-test) with which to optimise the pa-
rameters of the model (which are estimated using the training set) and one evaluation set (eval-
test) with which to evaluate the performance of the language model. Partitions were made in the
approximate ratio of 98:1:1 for training:dev-test:eval-test set sizes using multiples of
five contiguous sentences to give partitions that were as homogeneous as possible. The size of the
resulting test sets was found to be sufficient for providing accurate perplexity results.

3.4. Vocabulary growth and corpus size

It is evident from the elementary introduction to differences between Russian and English given
in Section 2 that the number of different words encountered in the two languages will differ
significantly. What is unknown is to what extent this difference manifests itself and the conse-
quences it will have on existing language modelling techniques. In Fig. 1, the growth in the
number of unique tokens (essentially the vocabulary size) is plotted against corpus size for the two
corpora.
It is observed that the rate of growth of the vocabulary for Russian is approximately two and a

half times greater than that for English. This is perhaps surprisingly low, since Russian words
generally have many more inflected forms than words in English. One possible explanation is that
not all inflected forms of a Russian word are used with the same frequency. The other interesting
observation from this graph is that the vocabulary size is nowhere near saturating with the in-
creasing corpus size. Unfortunately, there was no accurate means of determining Russian word
stems so as to examine their growth with corpus size.

3.5. Coverage and vocabulary size

A useful measure of the coverage of a vocabulary is the percentage of words that are en-
countered in some held-out text which are out-of-vocabulary (OOV). The OOV-rate is thus defined
here as the number of tokens in some held-out text that are not in the vocabulary, divided by the
total number of tokens in the text. The significance of a particular vocabulary�s OOV-rate on
the recognition performance of a speech recogniser cannot be understated. If a word is not in the
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vocabulary, it cannot be recognised. Moreover, the wrong word that is hypothesised to have
occurred in it place will affect the recognition of subsequent words since it will be used as the
context for predicting the current word by the language model. It has been shown that, on av-
erage, for the Wall Street Journal Task, every OOV word that occurs in the test data, results in
approximately 1.6 word-errors (Woodland et al., 1994).
We define a vocabulary of size NV by taking the most frequent NV words from the training

set of each corpus. The OOV-rate is computed with respect to the eval-test set of each corpus.
The results, displayed in Fig. 2, highlight the significant difference between the two languages
which the size of the vocabulary has on the OOV-rate.
Currently the vocabulary size of a large vocabulary speech recogniser is around 65,000 (65k)

words since this is close to the limit of the number of identifiers that can be represented in a
computer by a two-byte integer. For the English corpus, such a vocabulary provides almost 99%
coverage on the eval-test set. The most significant observation with regard to the Russian
corpus, and one that inevitably dictates the course of subsequent work, is that the coverage of the
appreciably large (65k) vocabulary is only 92.4%. Alternatively, the OOV-rate of 7.6% is seven
times greater than for the English corpus 65k vocabulary.
From Fig. 2 we observe that as the size of the vocabulary is increased, the coverage on the

English corpus increases almost ten times faster than the coverage on the Russian corpus.
However, for both corpora and for the size of vocabularies of interest (>65k), each doubling of
the vocabulary size approximately halves the OOV-rate. Note that there are almost always OOV

Fig. 1. Growth in vocabulary size against corpus size.
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words in some held-out text, even when the vocabulary is defined to contain all the words which
occur in some much larger partition of the corpus.
All subsequent experiments will be performed with a vocabulary of the most frequent 65k

words that occur in the training set for both the Russian and English corpora. In addition,
experiments for a vocabulary of the most frequent 430,000 (430k) words in the training set will
be used for the Russian corpus. This vocabulary size was chosen to provide an OOV-rate identical
to that on the English corpus with a 65k vocabulary.

4. Word-based N-gram language modelling

Word trigram language models employing Good-Turing discounting and Katz back-off (Katz,
1987) were built on both corpora with all singleton N -grams (N > 1) discarded. A range of vo-
cabulary sizes, up to the maximum in the training set were investigated to assess the variation
in perplexity on the eval-test set. The perplexity of the word models increases as the vo-
cabulary size is increased, since vocabulary words are chosen according to their frequency of
occurrence in the corpus and increasing the vocabulary size means increasing the number of
lower-frequency words in the vocabulary. The statistics of additional low-frequency words are
unlikely to be as well estimated and will generally have a lower probability of occurring compared

Fig. 2. Variation of OOV-rate against (log) vocabulary size.
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to words in a smaller vocabulary. However, the increases in perplexity observed for English
were found to be similar to those for Russian when examined over a comparable range of
OOV-rates.
In Table 1, the perplexities on the eval-test data of Russian and English word trigram and

4-gram models with singleton events discarded ð1; 1; =1; 1; 1Þ and retained ð0; 0; =0; 0; 0Þ are gi-
ven. The Russian 4-gram models1 outperform the trigram models by around 3% compared to over
7% for English. This relatively small improvement for Russian may be a consequence of the
sparsity of the Russian corpus, the effect of which becomes more significant as N is increased. It
may also be speculated that the less constrained word-ordering in Russian means that there is
little to be gained by increasing the context for making predictions, since sequences of longer
length are as likely to appear in the future as hitherto unobserved permutations.
The results also show that, for Russian, retaining singleton N -grams is useful in reducing the

perplexity for both trigram and 4-gram models and also for both vocabulary sizes. For the 65k
trigram model the perplexity improvement is 6.3% while for the 430k trigram model it is 8.8%.
Models in which all N-grams are retained, have significantly more parameters (five to six times
more) than models which discard singleton N-grams. However, these are significant improvements
and suggest that perhaps the Good-Turing discounting scheme in conjunction with backing-off is
underestimating low-frequency events for Russian. The improvements when N -grams are retained
correlate with an increase in trigram (4-gram) hits and further imply the usefulness of the sin-
gleton events in prediction. For the English models, on the other hand, when singleton events are
retained there is a 3.6% improvement in the trigram model and a negligible improvement in the
4-gram model. This observation can be expected to hold true only for training and test data that
are homogeneous.

5. Class-based N-gram language modelling

All class-based language models (hereafter referred to simply as class models) employ some
component that uses word equivalence classes to capture dependencies in the training text. A
deterministic word classification function (or class mapping function) of the form

C : w ! CðwÞ ð1Þ
assigns each word to one class only, hence the class mapping function is many-to-one. Word
classes are typically groups of words which are deemed to be similar in some way. If linguistic

Table 1

Perplexities of word trigram and 4-gram models with different cutoffs

3-gram 4-gram

Cutoffs (2g, 3g, 4g) 1, 1, _ 0, 0, _ 1, 1, 1 0, 0, 0

Russian 65k 413.3 387.4 398.9 385.5

Russian 430k 677.0 617.4 656.9 –

English 65k 216.1 208.4 200.6 199.1

1 The 430k Russian 4-gram with all events retained, ð0; 0; 0Þ, could not be built due to memory limitations.
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parts of speech are used to define the classes, all nouns might be grouped together in one of the
classes, for example, and all adjectives in another. Alternatively, some statistical criterion of
similarity can be used to determine the word classes. The latter is the focus of the class-based work
in this paper.
Having determined C, many different forms of class language model can be formulated by

making various approximations and assumptions on the dependence between words and classes,
for example

P ðwijwi�Nþ1; . . . ;wi�2;Cðwi�1ÞÞ; ð2Þ

P0ðwijCðwiÞÞ 	 P1ðCðwiÞjCðwi�Nþ1Þ; . . . ;Cðwi�1ÞÞ; ð3Þ

P ðwijCðwi�Nþ1Þ; . . . ;Cðwi�1ÞÞ: ð4Þ
In this paper, we will consider only the last two class models, which we will refer to as the
two-sided and one-sided class models, respectively. The two-sided class model is similar to the
one-sided class model but makes the assumption that the probability of the current word is
independent of the class of the previous word, if the class of the current word is known. The one-
sided class bigram model can be thought of as a variation on the word N -gram model in which the
word histories are tied so that the model parameters are more robustly estimated.

5.1. Two-sided class model

Ney refers to the model given by Eq. (3) as the two-sided symmetric class model (Ney et al.,
1994) since the same word classification function C is used to map both the current word and the
predecessor words. The model comprises two independent probability distributions: a unigram
class membership component P0ð	Þ and a class N -gram component P1ð	Þ which is used to predict
the current word�s class from its predecessor word classes.
In this paper, C is determined by optimising the log-likelihood of a bigram class model LLbi on

the training data, using the relative frequency estimates for the component probabilities

LLbiðCÞ ¼
XNW
i¼1

log
NðwiÞ

NðCðwiÞÞ
	 NðCðwi�1Þ;CðwiÞÞ

NðCðwi�1ÞÞ
; ð5Þ

where Nð	Þ is the count of the event inside the brackets and NW is the total number of words
in the training data. By grouping together similar terms and noting that the classification
function has no effect on terms containing only NðwiÞ we obtain the following optimisation
function:

LLbiðCÞ ¼
XNC
i¼1

XNC
j¼1

Nðci; cjÞ 	 logNðci; cjÞ � 2 	
XNC
i¼1

NðciÞ 	 logNðciÞ; ð6Þ

where NC is the number of word equivalence classes and NV was defined in Section 3.5. Once C has
been determined, it is a relatively simple matter to construct the class model. Although most
algorithmic methods determine the classification function using a bigram class model, the as-
sumption is often made that the classification is suitable for mapping all N words in the N -gram.
There are far fewer free parameters to estimate in a class N -gram model than in a word N-gram
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model since in general NC � NV; there are (NC 	 ðNC � 1Þ þ NV � NC) free parameters to estimate
for a class bigram model compared to NV 	 ðNV � 1Þ for a word bigram model.

5.2. One-sided class model

The two-sided symmetric class model combines what may be thought of as separate state
transition and state emission distributions, with the same class mapping function for both the
current and predecessor words. Here we consider the one-sided class N -gram model given by Eq.
(4) in which a state mapping is used for the predecessor words only, and the current word that is
being predicted is not mapped at all. The state mapping is an (N � 1)-tuple of word classes, so the
probability of the current word is directly conditioned on the (N � 1) classes of the predecessor
words.
The optimisation criterion is defined to be the log-likelihood of the training text using a one-

sided class bigram model and maximum likelihood estimates of the probabilities

LLbiðCÞ ¼
XNW
i¼1

log P ðwijCðwi�1ÞÞ ¼
XNC
j¼1

XNV
i¼1

Nðcj;wiÞ 	 log
Nðcj;wiÞ
NðcjÞ

; ð7Þ

which can be further simplified for implementation to

LLbiðCÞ ¼
XNC
j¼1

XNV
i¼1

Nðcj;wiÞ 	 logNðcj;wiÞ �
XNC
j¼1

NðcjÞ 	 logNðcjÞ: ð8Þ

In the one-sided class bigram model there are NC 	 ðNV � 1Þ free parameters to estimate.

5.3. The clustering operation

The exchange algorithm (Duda and Hart, 1973) is used to determine the class mapping function
for the two-sided and one-sided class models by maximising the log-likelihood on the training
data of the two-sided, symmetric class bigram model given by Eq. (3) or of the one-sided class
bigram model given by Eq. (4), respectively. The algorithm itself has been extensively discussed in
the literature and an analysis of the update equations and efficient implementation details are
given for the two-sided model in Martin et al. (1998), for example. In order not to repeat that
analysis here, only the details which are considered relevant to the experiments will be given where
appropriate.

5.3.1. Update equations for one-sided clustering
Count updates for the one-sided model can be performed in a similar manner to those described

for the two-sided model in Martin et al. (1998). Only the contribution of those counts that are
affected by the movement of wi from class cj to class ck need to be updated, i.e., only those stored
bigram counts in which wi appears. The count update equations are as follows:

8w : Nðcj;wÞ ¼ Nðcj;wÞ � Nðwi;wÞ; ð9Þ

8w : Nðck;wÞ ¼ Nðck;wÞ þ Nðwi;wÞ; ð10Þ
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NðcjÞ ¼ NðcjÞ � NðwiÞ; ð11Þ

NðckÞ ¼ NðckÞ þ NðwiÞ; ð12Þ
where, for example,

Nðck;wÞ ¼
X

8i:wi2ck

Nðwi;wÞ: ð13Þ

There is no explicit search involved in computing the count updates since only those counts for
words which follow wi in the training data need to be changed and these can be indexed directly.
The contribution to the log-likelihood of wi being in class cj need only be computed once.
Thereafter, the contribution to the log-likelihood of wi being in all remaining classes ck can be
computed.
For the two-sided model when wi is moved, the class bigram counts Nðck; cÞ and Nðc; ckÞ for all

c are affected. However, for the one-sided model only Nðck;wÞ is affected, hence the change in log-
likelihood can effectively be computed for all classes simultaneously. Word wi is then moved to the
class ck, for which the increase in log-likelihood is the greatest.

5.3.2. Computational complexity of two-sided clustering

The update equations presented in Martin et al. (1998) facilitate the computation of the op-
timisation criterion in OðNCÞ time each time a word is moved from one class to another class.
Since, for each of the I iterations, each word in the vocabulary must be moved (tentatively) from
its original class to all possible destination classes, there is a OðI 	 NV 	 N 2

CÞ complexity to the al-
gorithm which dominates due to the log operations in the innermost loop where the change in log-
likelihood is computed. However, for small numbers of classes, the size of the training data NW
may also become a dominant factor. This manifests itself as the number of unique bigrams
(containing only vocabulary words) in the training data B2 (where B � NW in general) which is
factored into the count generation procedure. The complexity of the algorithm can therefore be
shown to be

OðI 	 ð2 	 Bþ 2 	 NV 	 N 2
CÞÞ; ð14Þ

where the 2 	 B factor originates from the generation of counts Nðwi; cÞ and Nðc;wiÞ and because
the implementation does not involve any search in looking up the necessary bigram counts. In
addition, by only considering the average number of predecessor word classes Npre

C and successor
word classes N suc

C , for which Nðwi; cÞ 6¼ 0 and Nðc;wiÞ 6¼ 0 the complexity can be reduced still
further to

OðI 	 ð2 	 Bþ NV 	 NC 	 ðNpre
C þ N suc

C ÞÞÞ: ð15Þ
This results in a significant reduction in the complexity of the algorithm which is consequently
made to be ‘‘more than linear but far less than quadratic [in the number of classes]’’ (Martin et al.,
1998).

2 The number of distinct bigrams B in the training data is affected by the size of the training data NW and the size of the
vocabulary NV. As an example of the absolute values that are involved, for the 65k Russian vocabulary B � 12� 106
and for the 430k vocabulary B � 20� 106.
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5.3.3. Computational complexity for one-sided clustering

Each iteration I of the algorithm involves finding the locally optimal class for the NV vocab-
ulary words by moving each word in turn to each of the NC classes. When word wi is moved to a
tentative destination class, ððB=NVÞ þ 1Þ count updates involving a log operation must be per-
formed on average, where ðB=NVÞ is the average number of distinct bigrams per word, i.e., all
Nðwi;wÞ in which wi appears. The complexity of the algorithm is therefore linear in the number of
classes and linear in the number of words in the vocabulary:

O I 	 NV 	 NC 	
B
NV

� �� �
: ð16Þ

Compared to Eq. (15) this complexity highlights a significant advantage of this algorithm over
that for the two-sided model, specifically because the algorithm no longer scales quadratically in
the number of classes and since ðB=NVÞ � Npre

C þ N suc
C .

5.3.4. Efficient code implementation

Implementation of each algorithm depends largely on how the bigram counts are to be stored.
For the two-sided clustering algorithm the bigram counts can easily be accommodated in a
NC � NC array for the range of values of NC that we investigate. For the one-sided clustering
algorithm, the storage of the bigram counts would require a NV � NC array which is prohibitive
for all but small values of NV and NC. We will refer to the latter implementation as version one of
the one-sided clustering algorithm. Version two of the algorithm was implemented using linked-
lists. This removes the necessity for any repetitive search operations during count generation and
allows efficient storage of the bigram counts Nðc;wÞ.

5.4. Experimental procedure

The experimental procedure employed for obtaining the word classes and subsequently
building the class trigram models was identical for both corpora so as to allow as comprehensive
and legitimate a comparison as possible. Each algorithm was initialised by assigning the most
frequent (NC � 1) vocabulary words each to their own unique class and all remaining vocabulary
words were placed in the NCth class. Words were clustered into 204, 504, 1004, 2004, 3004, 4004,
and 5004 classes. The extra four classes relate to the four special symbols: hsi, h=si, hNUMBERi,
and hUNKi (sentence-begin, sentence-end, number, and unknown-word symbols) which were
each placed in their own unique classes and could not be moved from these classes nor could other
words be moved to them during clustering. The vocabulary size was fixed to be the most frequent
65k words (also 430k words for the Russian experiments) as used in the word N -gram experiments
in Section 4. All vocabulary words, other than the four special symbols, were considered for
classification and were moved in order of decreasing frequency of occurrence in the training data.
Two iterations through the vocabulary were performed in every case except for two-sided clus-
tering of the Russian 430k vocabulary where NC was limited to 2004 classes and only one iteration
was executed due to the excessive amount of computation time required. The final classification
function obtained was then used to construct Katz back-off class trigram models built and
smoothed in an identical manner to the word N-gram models in Section 4. Following the ob-
servations made in the same section, it was considered more important that the class models did
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not contain singleton N-gram events that had been discarded from the word model since these
were considered more likely to contribute to any differences observed in model performance. As a
consequence each class model contains a different number of explicitly stored unigram, bigram
and trigram events.

5.5. Clustering times

A comparison of the clustering times per iteration between the one-sided and two-sided models�
clustering algorithms is plotted in Fig. 3 for the Russian 65k and 430k vocabularies. The clus-
tering times for the English 65k vocabulary, though not shown, are similar to those for the
Russian 65k vocabulary. The clustering operation was performed on a 300MHz Ultra 2 Sun
Sparc workstation. The two points shown by circles in Fig. 3 are for version one of the one-sided
clustering algorithm in which statically allocated arrays are used (see Section 5.3.4).
It is clear from Fig. 3 that for the 65k vocabulary, the one-sided clustering is much faster than

two-sided clustering for NC P 504 and for the 430k vocabulary this is also true when NC P 1004.
Moreover, using version one, the faster implementation of the one-sided algorithm, makes one-
sided clustering faster for the values of NCð6504Þ over which it was practical to use it, at the
expense of vastly increased memory requirements. The almost quadratic increase in clustering

Fig. 3. Clustering times per iteration for one-sided and two-sided models with both a 65k and 430k Russian vocabulary

on a 300MHz Ultra 2 Sun Sparc workstation (version one of one-sided clustering algorithm is marked using circles).
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time with the number of classes for the two-sided model is very clear from the figure as is the
approximately linear increase in clustering time for one-sided clustering. This establishes the
major advantage of the one-sided clustering algorithm over the two-sided clustering algorithm.
Moreover, when a large vocabulary is used the excessive time required by the two-sided algorithm
makes the one-sided algorithm the only practical choice between these two.

5.6. Perplexity results

The perplexities of the stand-alone class trigram models and of the interpolated word trigram
and class trigram models computed on the eval-test set of each corpus are shown in Figs. 4–6.
The interpolation weights were chosen so as to optimise the perplexity on the appropriate dev-
test portion of each corpus using a tool that uses the E-M algorithm (Rosenfeld, 1994) to
perform the optimisation. Figs. 4 and 5 show perplexity results on Russian for the 65k and 430k
vocabularies respectively. Fig. 6 shows the perplexity results for the 65k English vocabulary.
It is clear that the overall trends across both languages, and across both vocabulary sizes for

Russian, are more or less identical. However, an interesting difference between the two languages
is that for both Russian vocabularies the one-sided class models with NC > 1004 have a lower
perplexity than the word model, whereas for English this does not occur in the range of classes
that were investigated. For the 430k Russian vocabulary the one-sided model has a perplexity up

Fig. 4. Russian (65k): perplexity results for stand-alone class and interpolated word/class models on eval-test data.
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to 4.3% lower than the word model. Moreover, all the one-sided class models had fewer pa-
rameters than the word model.
When the class models are linearly interpolated with the word model, the weight assigned to the

class model was found to increase as NC increased. However, the word model was always given a
higher weighting even when interpolated with a class model that had a lower perplexity than the
word model. For both languages with the 65k vocabularies the interpolated models exhibit a
minimum perplexity when 2004 classes are used in the two-sided model and when 504 classes are
used in the one-sided model. We may expect that these minimum values are related to the quantity
of training data used for building the models and the size of the vocabulary. In addition, since the
minima for each type of class model occur with different numbers of classes this also increases the
relative difference in clustering times required to build the best of each class model. Again, this
favours one-sided clustering over two-sided clustering. We cannot say anything for certain about
the 430k Russian experiments since obtaining more data points was too time consuming.
Nonetheless it is clear that the reduction in perplexity is greatest with the interpolated word and
two-sided class model of up to 7.9% for the English vocabulary, and up to 23.0% with the 430k
Russian vocabulary. The reduction obtained with the interpolated word and one-sided class
model is up to 5.3% for English and up to 16.2% for the 430k Russian vocabulary. Linear in-
terpolation has effectively combined the generalisation strength of the class model with the
specificity strength of the word model.

Fig. 5. Russian (430k): perplexity results for stand-alone class and interpolated word/class models on eval-test

data. (Only one iteration of two-sided clustering algorithm was executed to obtain the two-sided results.).
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For a given value of NC the one-sided class model tends to have more parameters than the two-
sided model. This is directly related to the types of dependencies that the two types of class models
capture. In general, it was observed that one-sided and two-sided class models with similar
numbers of parameters had the same perplexity when they were used alone. The different types of
dependencies in each model also explains the different optimal values of NC for the interpolated
word and class models. The two-sided class model captures more general dependencies than the
one-sided model and a higher value of NC is required in the interpolated model for the general-
isation ability of the class model to best complement the specificity of the word model. The one-
sided model captures dependencies that lie somewhere between the specific word sequences
captured by the word model and the more general class sequences of the two-sided class model.
The value of NC affects the tradeoff between the ability to generalise to unseen word sequences and
the accuracy with which words are predicted.
Examples of the contents of ten randomly chosen classes from a two-sided class model on

English are given in Table 2. An examination of the contents of the classes from different models
showed that words with a clear semantic or syntactic relationship had often been clustered to-
gether. This was true for both the one-sided and two-sided classifications. For Russian these
relationships appeared even more obvious, for example, there were many classes in which most of
the inflected forms of a particular word had been grouped together.

Fig. 6. English (65k): perplexity results for stand-alone class and interpolated word/class models on eval-test data.
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6. Word recognition experiments

Combinations of words and classes have often given improvements over using only word
models on broadcast news tasks. In this section, we examine the difference in performance be-
tween the one-sided and two-sided class models when they are interpolated with a word model on
a broadcast news task.
The 1997 DARPA HUB4 broadcast news evaluation was chosen for the experiments and we

perform lattice rescoring experiments on lattices generated using the 1997 HTK broadcast news
transcription system described in Woodland et al. (1998). The language model training data
comprised 132 million words of the LDC broadcast news texts, the transcriptions of the 1997
broadcast news training data (added twice) and the 1995 Marketplace transcriptions. A word
trigram model was built using the same vocabulary that was used to generate the original lattices.
This baseline word trigram employed Katz back-off with Good-Turing discounting and had
singleton bigrams and trigrams removed to produce a model containing around 16.5 million
parameters. The optimal number of classes and the interpolation weights between the word and
class models were optimised on the development lattices. The number of classes was varied in
increments of 100 between 100 and 1500 classes and the interpolation weights evaluated in in-
crements of 0.1. The optimal number of classes for the two-sided model was found to be 1000 with
interpolation weights of 0.7 (word) and 0.3 (class). For the one-sided model the optimal number
of classes was 400 with interpolation weights 0.6 (word) and 0.4 (class). The perplexity of the
models on the reference transcription and the word error rate results are given in Table 3.

Table 2

All, or up to the 10 most frequent, words from 10 randomly chosen classes of the 1004-class two-sided English model

Class 1 Class 2 Class 3 Class 4 Class 5

CONCERNED

WRONG

HAPPENING

EVEN I�D HIMSELF RAINING

EQUIVALENTLY YOU�D MINDEDLY EIGHT BERSERK

WE�D THEMSELF SNOWING

GROUNDLESS

NODED

AGOG

NEEDFUL

Class 6 Class 7 Class 8 Class 9 Class 10

AVAILABLE SOCIETY RELATIONSHIP GONE

PAYABLE CULTURE RELATIONSHIPS GROWN

PRICED POLITICS CONFLICT BEGUN

TO REDUNDANT LITERATURE LINK FALLEN

TER TRANSMITTED DEMOCRACY CONVERSATION SPOKEN

TAE UNDERWAY RELIGION CONNECTION RISEN

UNAVAILABLE CONSCIOUSNESS LINKS ARISEN

REFERENCED IDEOLOGY COMPARISON SPRUNG

RECOVERABLE CAPITALISM PARTNERSHIP LAIN

OBTAINABLE CHRISTIANITY TENSION SHRUNK
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Both model combinations give an improvement in performance over the baseline word trigram
model, and each improvement is statistically significant at the 99% level using the NIST Matched
Pair Sentence Segment test. Also, interpolating a word 4-gram model (with bigram, trigram and 4-
gram cutoffs of 1,3,3) with a class 4-gram model (with the same cutoffs) reduced the word 4-gram
baseline result of 17.6–17.1% for the interpolated word and two-sided model, and to 17.2% for the
interpolated word and one-sided model. Both these improvements were also found to be statis-
tically significant at the 99% confidence level using the same test.

7. Discussion

It is clear from the perplexity results that have been presented for Russian that combined class
and word-based language modelling can produce significant improvements in performance. For a
language like Russian where higher order word N -gram models do not significantly improve
performance, combinations of word and class models appear to offer an appealing solution.
Although the improvements in perplexity were shown to be generally less for English, they still
translated into significant reductions in word error rate on an English language broadcast news
task.
The advantage of using the one-sided class model has been clearly demonstrated for a situation

where a very large vocabulary is necessary. Automatic classifications can be obtained in signifi-
cantly less time than for the two-sided class model with little loss in performance. Also, although it
has not been explicitly investigated here, clustering can be used as a pruning technique for ob-
taining smaller and/or more robust stand-alone language models. This was demonstrated with the
perplexity results presented in Section 5.6. For such situations a larger number of classes is
generally required hence the scaling properties of the algorithm for the one-sided class model
recommend its use.
An investigation of grammar-based approaches, and language modelling with non-local de-

pendencies, to tackle the outstanding issues in Russian is left for future work. We believe,
nonetheless, that the models and results presented in this paper provide a good reference point for
such future experiments.

8. Conclusion

The first observation that was made regarding the differences between Russian and English was
that to achieve the same coverage as a 65k vocabulary on English, a vocabulary approximately

Table 3

Perplexity and word error rate on evaluation data of the optimised, interpolated word and class models, and the

baseline word trigram model

Model PPref %WER % Improvement

Interpolated two-sided 1000 161.6 17.8 2.2

Interpolated one-sided 400 162.4 17.8 2.2

Baseline word trigram 171.4 18.2 –
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seven times larger is required for Russian. It was shown that the use of higher order N-grams was
generally not as effective for modelling Russian as it was for English. This prompted the exam-
ination of combinations of word and class models since, in the literature, such combinations had
been shown to be effective at reducing the perplexity on data in several languages. Automatic
classifications of words into classes had also been shown to be superior to linguistically derived
classifications. Two types of class model were investigated in the paper: a two-sided class model
and a novel, one-sided class model. The experiments in this paper represent the first investigation
of the characteristics of the one-sided class model. Results of perplexity experiments using
combinations of word and class models showed that the combination with the two-sided model
produced greater reductions in perplexity than the combination with the one-sided model for both
languages and vocabulary sizes considered. However, the clustering algorithm used to obtain
classifications for the two-sided class model was shown to be extremely slow for the very large
Russian vocabulary. The algorithm for the one-sided model, on the other hand, was shown to be
much faster. Finally, the results of lattice rescoring experiments on an English language broadcast
news task showed that word error rate reductions were both significant and identical for both
combinations of the word model with either the one-sided or two-sided class model.
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